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Nonstationary optimal paths and tails of prehistory probability density in multistable
stochastic systems

B. E. Vugmeister, J. Botina, and H. Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 8 January 1997!

The tails of prehistory probability density in nonlinear multistable stochastic systems driven by white
Gaussian noise, which has been a subject of recent study, are analyzed by employing the concepts of nonsta-
tionary optimal fluctuations. Results of numerical simulations show that the prehistory probability density is
non-Gaussian and highly asymmetrical, and that it is an essential feature of noise driven fluctuations in
nonlinear systems. We also show that in systems with detailed balance the prehistory probability density is the
conventional transition probability that obeys the backward Kolmogorov equation.@S1063-651X~97!11705-6#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Recent theoretical and experimental studies@1,2# of large
fluctuations in stochastic systems driven by white Gauss
noise have shown that, among the different fluctuation pa
of the system, the most probableoptimal fluctuation path
plays a crucial role. This is true for large output fluctuatio
since the probability of encountering such fluctuations pe
sharply at the deterministic optimal fluctuation trajecto
driven by an optimal realization from the random noise ba

The most probable fluctuation path, which we will call th
stationary optimal path~SOP!, is the optimal trajectory
xopt
s (t;t f ,xf) that brings the system to a given pointxf of the
phase space at instantt f from the vicinity of the initial at-
tractorxeq, where the system has been fluctuating for a lo
period of time prior to reaching the pointxf .The concept of
SOP can be traced back to the work of Onsager and Mac
@3# and has been further widely used~see, e.g., Refs
@4–10#!.

In particular, the SOP determines the quasistation
probability densityPeq(xf), referenced to the local equilib
rium point xeq, a system located at pointxf under the con-
dition that it never left the region of attraction toxeq. An-
other quantity of interest is the transition probability dens
P(xf ,t f ;x0 ,t0) for the system to be at pointxf at t f , given
that it was at x0 at time t0. It follows that
P(xf ,t f ;x0 ,t0)→Peq(xf) for t0→2`, provided thatx0 be-
longs to the domain of attraction toxeq.

The distribution of different paths for a nonlinear doub
well potential has been investigated@1,2# through consider-
ation of the so calledprehistory probability density
Ph(xf ,t f ;x0 ,t0); that is a conditional probability that th
system will be brought to the final pointxf at t f from the
vicinity of the equilibrium positionxeq via the pointx0 at the
intermediate instantt0. Using the fact that the prehistor
probability density reaches its maximum on the SOP end
at xf , then lnPh(xf ,tf ;x0,t0) has been represented as a pow
series with respect to the deviation ofx0 from the optimal
path. The first term in this series is responsible for the Gau
ian behavior of thePh(xf ,t f ;x0 ,t0) near its maximum. It is
apparent that the validity of the power series expansion
551063-651X/97/55~5!/5338~5!/$10.00
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quires that the deviation ofx0 from the SOP be sufficiently
small.

Until now, to our knowledge, there have been no attem
to calculate the prehistory probability density outside of t
Gaussian domain. The region where one can observe
deviation of Ph(xf ,t f ;x0 ,t0) from the universal Gaussia
form is most interesting, since it reflects the specificity of t
particular system.

Motivated by the fact that the deviation o
Ph(xf ,t f ;x0 ,t0) from the Gaussian form has been observ
in experiments@1#, in this paper we performed an analysis
the prehistory probability density for a broad range of init
positionsx0 outside the vicinity of the SOP. This approach
based on the calculation of ‘‘nonstationary optimal paths
which we call the nonstationary optimal trajectories th
maximize the value of the transition probability consider
as a functional of different paths starting at pointx0 at time
t0 and ending at pointxf at timet f . We will show below that
the nonstationary optimal path formalism naturally allow
for a calculation of the highly non-Gaussian tails of the p
history probability density appearing in nonlinear system

II. NONSTATIONARY OPTIMAL PATHS
IN NONLINEAR SYSTEMS

We will consider a one dimensional stochastic system
this has been the subject of modeling in analog experime
@1# described by the equation~dimensionless units!

ẋ52U8~x!1 f ~ t !, ~1!

whereU8(x) is the deterministic force induced by the no
linear double well potential

U~x!52 1
2x

21 1
4x

4, ~2!

and f (t) is random Gaussian white noise with the correlati
function

^ f ~ t ! f ~ t8!&5Dd~ t2t8!. ~3!

In order to calculate the transition probabilities we ma
use of Feynman’s notion@11# of relating the probability
functionalF@x(t)# of the system output fluctuations and th
probability functionalP@ f (t)# of the input noise. For Gauss
ian noise the probability functionalP@ f (t)# is given by
5338 © 1997 The American Physical Society
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P@ f ~ t !#}expF2
1

2DEt0
t f
dt f~ t !2G . ~4!

One can see from Eq.~4! thatP@ f (t)#, and henceF@x(t)#,
reaches its maximum for the most probableoptimal random
field f opt, introduced in Ref.@5#, which minimizes the inte-
gral *dt f(t)2 under the constraint that the equation of m
tion, Eq. ~1!, is satisfied andx(t0)5x0 , x(t f)5xf . Such a
constraint leads to a nonzero value of the optimal noise fi
f opt(t), which would be zero without constraints. We w
assume that pointsx0 andxf belong to the region of attrac
tion of the same attractor, including any small vicinity of th
separatrix.

The optimal transition probability is given by the mo
favorable realization of noise which brings the system fr
point (x0 ,t0) to point (xf ,t f), i.e.,

P~xf ,t f ;x0 ,t0!}expF2
1

2DEt0
t f
dt fopt~ t !

2G . ~5!

In order to find the quasistationary probability distributio
Peq(xf), one should take the limit in Eq.~5!, x0→xeq,
t0→2`. The corresponding optimal trajectory is a SOP, a
the corresponding optimal field is a quasistationary optim
field f opt

s (t). We have

Peq~xf !}expF2
1

2DE2`

t f
dt fopt

s ~ t !2G . ~6!

Following Ref.@5#, we replacef (t) in Eq. ~5! by its form
given by the equation of motion, Eq.~1!. We obtain

P~xf ,t f ;x0 ,t0!}expF2
S

2DG , ~7!

whereS is the action integral

S5
1

2 E
t0

t f
dt@ ẋ1U8~x!#2. ~8!

Note that, in the case of white noise, Eq.~7! can be ob-
tained also from the corresponding Fokker-Plank equa
with the use of WKB approximation@12#. The validity of
Eqs.~5! and ~8! corresponds to the limit of low noise inten
sity for whichS/D@1.

Variation of the resulting action integral gives rise to e
fective dynamics described by the Hamiltonian

H5 1
2 ẋ

22 1
2U8~x!2 ~9!

and equation of motion

ẍ2U8~x!U9~x!50, ~10!

with boundary condition

x~ t0!5x0 , x~ t f !5xf . ~11!

Equation~10! is the Euler-Lagrange equation for the fun
tional, Eq.~8!.

The solution of Eqs.~10! and ~11! represents the nonsta
tionary optimal pathxopt(t) between points (x0 ,t0) and
-

ld

d
l

n

(xf ,t f) corresponding to finite energy in Eq.~9!. The SOP
xopt
s (t;xf ,t f) ending at pointxf at t f represents a partial so
lution of Eq. ~10! that satisfies the first order differentia
equation

dxopt
s

dt
5U8~xopt

s !, ~12!

with boundary conditions

x~ t f !5xf , x~2`!5xeq. ~13!

The solution of Eqs.~12! and ~13! with xeq521 for the
double well potential given by Eq.~2! is the instantonsolu-
tion @13#

xopt
s ~ t !52

1

A11Cexp@2t#
, f opt

s ~ t !5
2Cexp@2t#

A~11Cexp@2t# !3
,

~14!

where the constantC determines the valuexopt
s (t f)5xf . The

other partial solution of the second order differential equ
tion @Eq. ~10!# satisfies the equationdx/dt52U8(x), that is
the equation of motion@Eq. ~10!# without noise. Note that in
the general case with a nonlinear dependence ofU8(x) on
x, the solution of Eq.~10! cannot be presented as a line
combination of the partial solutions.

The nonstationary optimal paths for the potential given
Eq. ~2! have been found by numerical integration of Eq.~10!,
subject to boundary conditions, Eq.~11!. The two point
boundary value problem has been reexpressed by cons
ing the problem with initial conditionsx(t0)5x0 and
ẋ(t0)5v0. A minimization procedure has been employed
order to find the best value of the initial velocityv0 to reach
the target pointxf at t f . As a test for the calculations, th
energy conservation law in Eq.~9! has been verified for eac
trajectory obtained.

In Figs. 1~a! and 2~a!, we illustrate the typical nonstation
ary optimal paths corresponding toxf520.1 for different
values ofx0 andt5t f2t0. For comparison we show also th
SOP, given by Eq.~14! @for xf520.1, the constantC599 in
Eq. ~14!#. As one can see from Fig. 2~a!, the essential feature
of the nonstationary optimal trajectories starting atx0,0 is
the possibility of a sign change of the velocityẋ(t) at an
intermediate point of the trajectory. For small values oft,
nonstationary optimal trajectories deviate significantly fro
the SOP, whereas for asymptotically larget they rapidly
approach the SOP independently of the initial pointx0. This
behavior can also be understood from the exact solution
Eq. ~10! for the harmonic potential presented in Sec. III.

With the use of Eq.~1! and the known temporal form o
the nonstationary trajectories, one can reproduce the co
sponding values of the optimal noise field. The values
f opt(t) for the trajectories shown in Figs. 1~a! and 2~a! are
presented in Figs. 1~b! and 2~b!. In the next section the ap
proach above will be used for the calculation of the preh
tory probability density for a broad range of initial position
x0.
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III. PREHISTORY PROBABILITY DENSITY

The prehistory probability density is given by@1#

Ph~xf ,t f ;x0 ,t0!}expF2
1

DS E
2`

t f
dt fopt~ t,x0 ,xf !

2

2E
2`

t f
dt fopt

s ~ t,xf !
2D G , ~15!

where the optimal noise fieldf (t,x0 ,xf) induces the nonsta
tionary optimal trajectory which starts atxeq at t52`,
passes pointx0 at t0, and reaches pointxf at t f ; f opt

s is the
stationary optimal field that induces the SOP ending at p
xf at t f . Thus we may write

E
2`

t f
dt fopt~ t,x0 ,xf !

25E
2`

t0
dt fopt

s ~ t,x0!
2

1E
t0

t f
dt fopt~ t,x0 ,xf !

2, ~16!

and with Eqs.~15! and ~16!, we arrive at

Ph~xf ,t f ;x0 ,t0!5
Peq~x0!P~xf ,t f ;x0 ,t0!

Peq~xf !
. ~17!

The difference between Ph(xf ,t f ;x0 ,t0) and
P(xf ,t f ;x0 ,t0) is thatPh(xf ,t f ;x0 ,t0) satisfies the normal

FIG. 1. The nonstationary optimal path~a! and optimal field~b!
for the nonlinear potential Eq.~2! and t52 corresponding to the
final point xf520.1 and initial pointsx0521 ~1!, 21.5 ~2!, and
20.5 ~3!. The dotted lines show the stationary optimal path and
corresponding optimal field.
t

ization condition with respect to initial pointsx0
@*dx0Ph(xf ,t f ;x0 ,t0)51# whereasP(xf ,t f ;x0 ,t0) satisfies
the analogous normalization condition with respect to fin
points xf . Equation ~15! shows that ifx0 belongs to the
stationary optimal path ending atxf , then both integrals in
Eq. ~15! are equal and cancel, meaning th
Ph(xf ,t f ;x0 ,t0) reaches its maximum on the stationary o
timal path@1#.

It follows from Eq. ~17! that Peq(xf) given by Eqs.~6!,
~1!, and~14! satisfies the principle of detailed balance

Peq~xf !

Peq~x0!
5expF2

1

D
@U~xf !2U~x0!#G , ~18!

andP(xf ,t f ;x0 ,t0) is the conventional transition probability
that obeys the forward Kolmogorov equation@14# due to the
white character of the noise. Then the prehistory probabi
density should obey the backward Kolmogorov equati
and, in fact, does not depend on the prehistory. Below
will illustrate this conclusion, which is a consequence of t
chosen quasiequilibrium value of the initial distribution, o
the model system with a quasiharmonic potential. In the g
eral case the prehistory probability density does depend
prehistory in multistable stochastic systems. Note also th
being consistent with the concept of optimal fluctuation, w
assume thatU(xf).U(x0) ~a particle is ‘‘climbing uphill’’!,
resulting in occasional fluctuations described by the preh
tory probability density.

e

FIG. 2. The nonstationary optimal path~a! and optimal field~b!
for the nonlinear potential Eq.~2! and t58 corresponding to the
final point xf520.1 and initial pointsx0521 ~1!, 21.5 ~2!, and
20.5 ~3!. The dotted lines show the stationary optimal path and
corresponding optimal field.
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FIG. 3. The activation energy of the prehistory probability density forxf520.1 as a function of initial positionx0 : ~1! t58, ~2! t52,
~3! t51.5, ~4! t51, and~5! t50.5. The data for curves 2–5 are multiplied by ten. Stars represent the values of 2@U(x02U(xeq)#, and
confirm that quasiequilibrium distribution takes place for larget.
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In Refs.@1,2# the partial solution@Eq. ~12!# has been used
for the evaluation of the prehistory probability density bas
on the iterative solution of Eq.~10! near the SOP implying
that the values of@x02xopt

s (t0 ;xf ,t f)# are not too large. We
stress, however, that using the formalism above, the pre
tory probability density as well as the transition probabiliti
can be evaluated without the limitation on the values
@x02xopt

s (t0 ;xf ,t f)#.
Prior to concentrating on the results of numerical calcu

tions for the case of the nonlinear potential@Eq. ~2!#, we will
present for illustration the simple expressions
P(xf ,t f ;x0 ,t0) andPh(xf ,t f ;x0 ,t0) with the quasiharmonic
potential of the form

U~x!5H 1
2 x

2, x<1

1
2 ~x22!2, x.1.

~19!

In this case the solution of Eq.~10! can be obtained analyti
cally. We have, in the domain of attraction atxeq50,

xopt~ t !5
1

et f2t02et02t f
@et~xfe

2t02x0e
2t f !

1e2t~x0e
t f2xfe

t0!#, x,1, ~20!

wherexopt(t) is the nonstationary optimal path.
The optimal noise field is of the form

f opt~ t !5
2et

et f2t02et02t f
~xfe

2t02x0e
2t f !. ~21!

Note that the two terms in Eq.~20! proportional toet and
e2t, respectively, represent the two partial solutions of E
~10!. Only the partial solution proportional toet, which
reaches a finite limit att0→2`, contributes to the SOP. In
d

is-

f

-

r

.

fact, for t0→2`, it follows from Eq. ~20! that
xopt(t)5xopt

s (t;xf ,t f)5xfe
t2t f @3#.

From Eqs.~5! and ~17!, we obtain

P~xf ,t f ;x0 ,t0!}expF2
1

D

~xf2x0e
2~ t f2t0!!2

12e22~ t f2t0! G , ~22!

Ph~xf ,t f ;x0 ,t0!}expF2
1

D

~x02xfe
2~ t f2t0!!2

12e22~ t f2t0! G . ~23!

One can see from Eqs.~22! and ~23! that in the case of the
quasiharmonic potential the nonstationary optimal path
proach reproduces the exact results for the transition p
ability and the prehistory probability density in linear st
chastic systems with Gaussian noise. Note that the prehis
probability density given by Eq.~23! obeys the backward
Kolmogorov equation@14#.

The prehistory probability density for the nonlinear pote
tial given by Eq.~2! has been calculated numerically with th
use of Eq.~15!. Precaution is required, however, since ne
the SOP the exponent in Eq.~15! becomes the small differ
ence of large numbers. In order to improve the accuracy
the calculations, we may represent the exponent
Ph(xf ,t f ;x0 ,t0) in the form

E
2`

t f
dt@ f opt

s ~ t,x0!
22 f opt

s ~ t,xf !
2#

1E
t0

t f
dt@ f opt~ t,x0 ,xf !

22 f opt
s ~ t,xf !

2#. ~24!

One can see from Eq.~24! that if x0 belongs to the stationary
optimal path ending at pointxf at t f , then both integrands in
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Eq. ~24! vanish. The calculated values o
2D lnPh(20.1,0;x0 ,2t) are presented in Fig. 3. It is see
that the parabolic character of the curves, and hence
Gaussian character of prehistory probability density, ta
place only in a small region in the vicinity of SOP where t
prehistory probability density reaches its maximum. In ge
eral, the functionPh(xf ,t f ;x0 ,t0) is highly asymmetrical,
and that is the essential feature of the path distribution
nonlinear systems.

IV. CONCLUSION

We have shown that the concept of a nonstationary o
mal path is an adequate approach for the analysis of tra
tion probabilities and prehistory probability density in noi
driven systems. The concept allows one to analyze the o
mal path distribution outside of the immediate vicinity of th
stationary optimal path. The observed highly asymmetr
shape of the prehistory probability density is the essen
feature of the fluctuations in nonlinear noise driven syste
.
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We hope that this observation will stimulate additional e
periments on the analysis of optimal path distributions
nonlinear systems.

The nonstationary optimal path approach for the analy
of fluctuations in stochastic systems should be especi
useful for exploring the possibilities of control of fluctua
tions by an external field. It has been shown recently@15,16#
that an optimal control field with a finite time duration ca
naturally cooperate with the nonstationary optimal no
such that its temporal form coincides with the temporal fo
of the optimal fluctuations.
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