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Nonstationary optimal paths and tails of prehistory probability density in multistable
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The tails of prehistory probability density in nonlinear multistable stochastic systems driven by white
Gaussian noise, which has been a subject of recent study, are analyzed by employing the concepts of nonsta-
tionary optimal fluctuations. Results of numerical simulations show that the prehistory probability density is
non-Gaussian and highly asymmetrical, and that it is an essential feature of noise driven fluctuations in
nonlinear systems. We also show that in systems with detailed balance the prehistory probability density is the
conventional transition probability that obeys the backward Kolmogorov equaBdn63-651X%97)11705-6

PACS numbef): 05.40+j, 02.50—r, 05.20—y

I. INTRODUCTION quires that the deviation ofy from the SOP be sufficiently
small.
Recent theoretical and experimental studieg] of large Until now, to our knowledge, there have been no attempts

fluctuations in stochastic systems driven by white GaussiafP calculate the prehistory probability density outside of the
noise have shown that, among the different fluctuation path§aussian domain. The region where one can observe the
of the system, the most probabbptimal fluctuation path fewapon Of Ph(Xt Lt 1 Xo,to) from 1t£|he unr|1versal .(]:’.a.uss'fr;]
plays a crucial role. This is true for large output fluctuations, orm Is most interesting, since it reflects the specificity of the

. I : . garticular system.
since the probability of encountering such fluctuations peak Motivated by the fact that the deviation of

sharply at the deterministic optimal fluctuation trajectoryp (x. t.:x, t,) from the Gaussian form has been observed
driven by an optimal realization from the random noise bathjn experimentg1], in this paper we performed an analysis of
The most probable fluctuation path, which we will call the the prehistory probability density for a broad range of initial
stationary optimal path(SOB), is the optimal trajectory positionsx, outside the vicinity of the SOP. This approach is
xgm(t;tf ,X¢) that brings the system to a given poigtof the ~ based on the calculation of “nonstationary optimal paths,”
phase space at instatfrom the vicinity of the initial at- Which we call the nonstationary optimal trajectories that
tractorxeq, Where the system has been fluctuating for a longnaximize _the value_ of the transition probablllty consldered
period of time prior to reaching the poirt.The concept of @S @ functional of different paths starting at porgtat time
SOP can be traced back to the work of Onsager and Machiufy @nd ending at point; at timet; . We will show below that

[3] and has been further widely usedee, e.g., Refs. he nonstationary optimal path formalism naturally allows
[4—10)) ' ' for a calculation of the highly non-Gaussian tails of the pre-

In particular, the SOP determines the quasistationar)t"smry probability density appearing in nonlinear systems.

probability densityPY(x;), referenced to the local equilib- Il. NONSTATIONARY OPTIMAL PATHS
rium pointxeq, @ system located at poin under the con- IN NONLINEAR SYSTEMS
dition that it never left the region of attraction iq,. An- _ _ _ _ _
other quantity of interest is the transition probability density ~We will consider a one dimensional stochastic system, as
P(X¢,ts:Xo,to) for the system to be at point att,, given this has t_)een the subject (_)f njodellr)g in analo_g experiments
that it was at x, at time t, It follows that [1] described by the equatigdimensionless unijs
P(X;,ts;Xg,tg)— P®4(X;) for t,— —co, provided thatx, be- x=—U"(x)+f(1) 1)
longs to the domain of attraction tQ,. '

The distribution of different paths for a nonlinear double whereU'(x) is the deterministic force induced by the non-
well potential has been investigatgt,2] through consider- linear double well potential
ation of the so calledprehistory probability density U(x)= — x2+ 1x4 @)
Ph(Xs,ts;Xg,t0); that is a conditional probability that the 2% T ano
system will be brought to the final poing at t; from the  andf(t) is random Gaussian white noise with the correlation
vicinity of the equilibrium positiorxe, via the pointx, at the  function
intermediate instant,. Using the fact that the prehistory S ,
probability density reaches its maximum on the SOP ending (FOF(t"))=Da(t-t"). ©)
atx;, then IrPy(x; ,t; ;%o,tg) has been represented as a power |n order to calculate the transition probabilities we make
series with respect to the deviation x§ from the optimal use of Feynman’s notiofill] of relating the probability
path. The first term in this series is responsible for the Gausdunctional ®[x(t) ] of the system output fluctuations and the
ian behavior of theP,(X;,t;;Xg,tg) near its maximum. Itis probability functionalP[ f(t)] of the input noise. For Gauss-
apparent that the validity of the power series expansion refan noise the probability functiond®[ f(t)] is given by
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(x¢,t;) corresponding to finite energy in E). The SOP
xgpt(t;xf ,t;) ending at pointx; att; represents a partial so-
lution of Eq. (10) that satisfies the first order differential
equation

1 (t )
PLf(t)]=exg — 55| dtf(H)"). (4)

One can see from Ed4) that P[f(t)], and henceb[x(t)],
reaches its maximum for the most probabfgimal random

field fop, introduced in Ref[5], which minimizes the inte- dxs

opt

gral fdtf(t)2 under the constraint that the equation of mo- i =U"(Xgp (12)
tion, Eq. (1), is satisfied and(ty) =Xq, X(t;)=X;. Such a

constraint leads to a nonzero value of the optimal noise field . .

fopt), Which would be zero without constraints. We will with boundary conditions

assume that pointsy andx; belong to the region of attrac-

tion of the same attractor, including any small vicinity of the X(t) =X¢,  X(—%0)=Xeq (13

separatrix.
The optimal transition probability is given by the most The solution of Egs(12) and (13) with Xe=—1 for the
favorable realization of noise which brings the system fromdouble well potential given by Ed2) is theinstantonsolu-

point (Xg,to) to point (X;,t¢), i.e.,

1 [t
P(Xf,tf;Xo,to)‘xeXF{_ﬁftodtfopt(t)z}- 5

In order to find the quasistationary probability distribution

P*Yx), one should take the limit in Eq(5), Xo— Xeq,

tion [13]
< 0 1 = 1) 2Cexq 2t]
X = —— f—
ont J1+Cexg2t]’ ont J(1+Cexg 2t])3’

(14)

to— — 0. The corresponding optimal trajectory is @ SOP, and,nere the constar@ determines the valuxf,pt(tf) =x;. The

the corresponding optimal field is a quasistationary optima

field f5,(t). We have

e 1 (u s ()2
PEYx;) xex _5f dtfoedt) | (6)

Following Ref.[5], we replacef(t) in Eq. (5) by its form
given by the equation of motion, E@l). We obtain

S
P(x;,t; ;Xo,to)“exr{ - ﬁ}, (7)
whereS is the action integral
1 [t .
S== f dt[x+U’(x)]° (8)
2 Jt,

Note that, in the case of white noise, E@) can be ob-

bther partial solution of the second order differential equa-
tion [Eq. (10)] satisfies the equatiathx/dt= —U'(x), that is

the equation of motiofEq. (10)] without noise. Note that in
the general case with a nonlinear dependenct @) on

X, the solution of Eq(10) cannot be presented as a linear
combination of the partial solutions.

The nonstationary optimal paths for the potential given by
Eq. (2) have been found by numerical integration of EL),
subject to boundary conditions, E¢l1). The two point
boundary value problem has been reexpressed by consider-
ing the problem with initial conditionsx(tg) =X, and
X(to) =vo. A minimization procedure has been employed in
order to find the best value of the initial velocity to reach
the target point; att;. As a test for the calculations, the
energy conservation law in E¢P) has been verified for each
trajectory obtained.

In Figs. Xa) and 2a), we illustrate the typical nonstation-

tained also from the corresponding Fokker-Plank equatioy optimal paths corresponding ig=—0.1 for different

with the use of WKB approximatiofl2]. The validity of

values ofxy and r=t;—ty. For comparison we show also the

Egs.(5) and(8) corresponds to the limit of low noise inten- SOP, given by Eq(14) [for x(=—0.1, the constar€=99 in

sity for which S/ID>1.

Eqg.(14)]. As one can see from Fig(&, the essential feature

Variation of the resulting action integral gives rise to ef- Of the nonstationary optimal trajectories startingxgt0 is

fective dynamics described by the Hamiltonian
H=3x*=3U"(x)? 9

and equation of motion

x—U’(x)U"(x)=0, (10
with boundary condition
X(tg)=Xq, X(tf)=X;. (11

the possibility of a sign change of the velocityt) at an
intermediate point of the trajectory. For small valuesmof
nonstationary optimal trajectories deviate significantly from
the SOP, whereas for asymptotically largethey rapidly
approach the SOP independently of the initial point This
behavior can also be understood from the exact solution of
Eq. (10) for the harmonic potential presented in Sec. lIl.
With the use of Eq(1) and the known temporal form of
the nonstationary trajectories, one can reproduce the corre-
sponding values of the optimal noise field. The values of
fopt) for the trajectories shown in Figs(d) and 2a) are

Equation(10) is the Euler-Lagrange equation for the func- presented in Figs.(h) and 2Zb). In the next section the ap-

tional, Eq.(8).

proach above will be used for the calculation of the prehis-

The solution of Egs(10) and (11) represents the nonsta- tory probability density for a broad range of initial positions

tionary optimal pathx,,(t) between points X,,t;) and

Xo-
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FIG. 2. The nonstationary optimal pati and optimal fieldb)
for the nonlinear potential Eq2) and =2 corresponding to the ]E_or 'I[he _nonlliearo FiOterg'?"..Eﬂ(Z) gnd Tig ciorrlespolnglnzg to tge
final pointx;=—0.1 and initial pointsx,=—1 (1), —1.5(2), and m(?spgmgrﬁ_d_ 'd‘?n |n|';:a p(;]lntsq,—_— (@), = | ( ),han dth
—0.5(3). The dotted lines show the stationary optimal path and the " (3. d'e ottg IIn?SIZ ow the stationary optimal path and the
corresponding optimal field. corresponding optimal field.

FIG. 1. The nonstationary optimal path) and optimal field(b)

Ill. PREHISTORY PROBABILITY DENSITY ization condition with respect to initial pointsxg
) - o [JdXoPhr(Xs,t5;Xg,t0) =1] whereasP(x;,t;;Xq,tp) satisfies
The prehistory probability density is given Y] the analogous normalization condition with respect to final
1/ (t points x; . Equation(15) shows that ifx, belongs to the
Ph(Xs ,ts ;Xo,to)ocex;{_ _U dtfopt(t’XOva)z stationary optimal path ending &, then both integrals in
Dl J-= Eq. (15 are equal and cancel, meaning that
t E’h(xf ,t::Xg,tp) reaches its maximum on the stationary op-
- f dtff)pt(t,xf)z) : (15  timal path[1]. _
—o It follows from Eg. (17) that P®Y(x;) given by Eqs.(6),
) o ) (1), and(14) satisfies the principle of detailed balance
where the optimal noise fielt{t,xq,X;) induces the nonsta-
tionary optimal trajectory which starts at,, at t=—-c, PeYx,) 1
passes poink, at to, and reaches poing; at t;; fg, is the ey =ex;{— B[U(xf)—U(xo)] : (18
stationary optimal field that induces the SOP ending at point Xo)

X¢ atts. Thus we may write . _ . .
andP(x;,t;;Xg,tp) is the conventional transition probability

tf L 5 that obeys the forward Kolmogorov equatidi¥] due to the
f_wdtfopt(tyxo’xf) = f_mdtfopt(t'XO) white character of the noise. Then the prehistory probability
density should obey the backward Kolmogorov equation
t ) and, in fact, does not depend on the prehistory. Below we
+ ft dtfop(tXo.Xs)% (160 will illustrate this conclusion, which is a consequence of the
0 chosen quasiequilibrium value of the initial distribution, on

and with Egs.(15) and (16), we arrive at the model system vyith a quasiha.r_monic p_otential. In the gen-
eral case the prehistory probability density does depend on
P4 xo) P(Xs ,ts;X0,to) prehistory in multistable stochastic systems. Note also that,

Ph(X ,te;Xo,to) = P x;) - (1D being consistent with the concept of optimal fluctuation, we

assume that) (x;) >U(Xp) (a particle is “climbing uphill”),
The difference  between P.(X:,ti;Xg,tg) and  resulting in occasional fluctuations described by the prehis-
P(Xt,tf;Xg,tg) is thatP,(xs,t;:Xg,tg) Satisfies the normal- tory probability density.
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FIG. 3. The activation energy of the prehistory probability densityxier —0.1 as a function of initial positiory: (1) =8, (2) 7=2,
(3) 7=1.5,(4) =1, and(5) =0.5. The data for curves 2—5 are multiplied by ten. Stars represent the valugb pf2- U (x.g) |, and
confirm that quasiequilibrium distribution takes place for large

In Refs.[1,2] the partial solutiodEq. (12)] has been used fact, for ty— —, it follows from Eqg. (20) that
for the evaluation of the prehistory probability density basedk,(t) =xg,(t; ;s ,t¢) =xse' ' [3].
on the iterative solution of Eq10) near the SOP implying From Eqgs.(5) and(17), we obtain
that the values o[fxo—xgpt(to;xf ,t;)] are not too large. We
stress, however, that using the formalism above, the prehis- 1 (x;—xpe~ (tr10))2
tory probability density as well as the transition probabilities P(x;,t; ;xo,to)ocexp{ D e Zu W } (22
can be evaluated without the limitation on the values of €
[Xo—Xgpdto:s X, t) -

Prior to concentrating on the results of numerical calcula- 1 (xo—xse~ 17 10))2
tions for the case of the nonlinear potenfigt. (2)], we will Pn(Xt,ts ;XO’IO)“eXF{ D 1-e 20t } (23
present for illustration the simple expressions for
P(Xs,ts;X0,tp) andPp(Xs,ts;Xq,t) With the quasiharmonic
potential of the form

One can see from Eq#22) and(23) that in the case of the
quasiharmonic potential the nonstationary optimal path ap-
proach reproduces the exact results for the transition prob-
U(x)= (19) ability and the prehistory probability density in linear sto-
1(x—2)2, x>1. chastic systems with Gaussian noise. Note that the prehistory
probability density given by Eq(23) obeys the backward
In this case the solution of E¢10) can be obtained analyti- Kolmogorov equatiorj14].
cally. We have, in the domain of attractionsa,=0, The prehistory probability density for the nonlinear poten-
tial given by Eq.(2) has been calculated numerically with the
use of Eq.(15). Precaution is required, however, since near

Xopi(t) = W[et(xfe_to_xoe_tf) the SOP the exponent in E(L5) becomes the small differ-
ence of large numbers. In order to improve the accuracy of
+e (xpelf—xsel0)], x<1, (200  the calculations, we may represent the exponent of

Pr(Xs,tf;Xg,tg) in the form
wherex,p(t) is the nonstationary optimal path.
The optimal noise field is of the form ft

f
t A F5ptx0) 2~ Fopftx1)?)

2e t ¢
fop(t)zm(xfe 0—Xge™ 'f). (21

t
+f At ot X0, X0) 2~ Fp(tX)2]. (29)
Note that the two terms in Eq20) proportional toe' and to
e !, respectively, represent the two partial solutions of Eq.
(10). Only the partial solution proportional te!, which  One can see from E@24) that if x, belongs to the stationary
reaches a finite limit at,— — o, contributes to the SOP. In optimal path ending at point atts, then both integrands in
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Eq. (24 vanish. The calculated values of We hope that this observation will stimulate additional ex-

—DInPy(—0.1,0%y,— 7) are presented in Fig. 3. It is seen periments on the analysis of optimal path distributions in

that the parabolic character of the curves, and hence theonlinear systems.

Gaussian character of prehistory probability density, takes The nonstationary optimal path approach for the analysis

place only in a small region in the vicinity of SOP where theof fluctuations in stochastic systems should be especially

prehistory probability density reaches its maximum. In gen-useful for exploring the possibilities of control of fluctua-

eral, the functionP,(x;,t;;Xg,to) is highly asymmetrical, tions by an external field. It has been shown recelit; 16|

and that is the essential feature of the path distribution irthat an optimal control field with a finite time duration can

nonlinear systems. naturally cooperate with the nonstationary optimal noise
such that its temporal form coincides with the temporal form

IV. CONCLUSION of the optimal fluctuations.

We have shown that the concept of a nonstationary opti-
mal path is an adequate a_lpproach for 'ghe analy.ssls.of trgnsr ACKNOWLEDGMENTS
tion probabilities and prehistory probability density in noise
driven systems. The concept allows one to analyze the opti- We are thankful to M. I. Dykman, R. S. Maier, M.
mal path distribution outside of the immediate vicinity of the Marder, and V. N. Smelyanskiy for the useful discussions of
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